Ahad, 28 Julai 2013

Helicobacter pylori and ulcer treatment

Helicobacter pylori

 When Dr Barry Marshall swallowed Helicobacter pylori(H. pylori) bacteria to test the theory that they were responsible for stomach ulcers, some people branded him as crazy. But it was this daring move that led to one of the most significant medical discoveries of the past few decades: identifying H. pylori as a common bacterial infection affecting the stomach, and a major cause of ulcers. Until then, scientists had believed that bacteria were unable to survive in the stomach’s acidic environment.
The H. pylori bacterium (pictured) was discovered by Marshall and Dr Robin Warren, a pathologist, at Western Australia’s Royal Perth Hospital in 1983 after they spent several months attempting to grow the bugs in culture. They eventually succeeded only by accident when the culture was left for longer than usual over the Easter holidays.
However, despite managing to grow the bug and prove that it was a new organism, the medical world took some convincing. Finally, Dr Marshall swallowed a solution containing the bug to prove his point. Sure enough, vomiting and other symptoms of stomach inflammation appeared about a week later.
The discovery was a huge breakthrough for gastroenterology, revolutionising the treatment of stomach and duodenal ulcers (often called peptic ulcers).

What is Helicobacter pylori?

Helicobacter pylori is a bacterium that survives in the stomach’s harsh acidic environment. H. pylori produces chemicals that damage the stomach’s protective mucous lining, allowing breaks to form, which are then vulnerable to erosion by the stomach acid and gastric juices.
H. pylori can be responsible for causing:
  • stomach (gastric) ulcers;
  • duodenal ulcers;
  • gastritis (inflammation of the stomach lining);
  • some forms of stomach cancer; and
  • lymphoma.
In fact, it is responsible for causing more than 90 per cent of duodenal ulcers and about 70 per cent of stomach ulcers.
Once someone contracts H. pylori, the infection generally persists for many years, possibly for life, unless they develop ulcer symptoms and are treated with antibiotics to kill the H. pylori.

How common is H. pylori?

Although anyone can potentially be infected with H. pylori, usually during childhood, the chance of becoming infected in Australia is much less than it once was.
It is thought that about 40 per cent of people in Australia aged over 40 are infected with the bacterium, with less than 10 per cent of children affected.
Men and women are equally affected by this germ, and infection rates are higher among older people and certain ethnic groups, such as Middle Eastern and Asian people.
However, many infected people do not develop ulcers or any other symptoms and are never aware that they carry the bug.

How do you get infected with H. pylori?

Scientists are unsure of the exact mechanism that allows people to become infected with the bacteria. H. pylori has been detected in the saliva of infected people, prompting scientists to think that it may be spread by mouth-to-mouth contact, such as kissing. Infection may also happen by sharing food or utensils with an infected person. It is also thought that infection occurs through contact with the stomach contents of an infected person, such as by coming into contact with their vomit. H. pylori can be spread easily among family members.
Because no one knows exactly how the bacteria are spread, preventing H. pyloriinfection is also difficult. Scientists are currently working on the development of a vaccine to prevent H. pylori infection.

Symptoms of H. pylori

Indigestion is the most common symptom of the bacteria, although most people experience no symptoms. Other symptoms include nausea, abdominal pain, bloating and burping.

How is H. pylori infection diagnosed?

H. pylori infection can be diagnosed using a breath test, a blood test or a biopsy test.

Breath test

This test uses the fact that H. pylori contains the enzyme urease, which breaks down urea in the stomach to ammonia and carbon dioxide. In the test you swallow a special urea solution which is chemically ‘labelled’ so that it can be traced later. If you have H. pylori in your stomach it will break down the ‘labelled’ urea into ammonia and carbon dioxide. Because the carbon dioxide will be ‘labelled’ it can be detected in your breath for a short time.

Blood test

Under normal circumstances, if you are infected with H. pylori your immune system will recognise that the bacterium is foreign to your body and will produce antibodies directed against it. The blood test for H. pylori detects this antibody and so it will show whether you have H. pylori present in your body or have had a recent infection with it. However, even if the test is positive it does not mean that you have an ulcer and you may not have any symptoms of the infection. Your doctor will be able to advise you if you should undergo further examination.

Biopsy

A biopsy is a tiny sample of tissue. This can be obtained from the stomach by carrying out a procedure called a gastroscopy. During a gastroscopy, a small flexible tube is passed through the mouth, down the gullet (oesophagus) and into the stomach, allowing a doctor to view the oesophagus, duodenum and stomach. A small piece of the stomach lining can be removed and then tested for the H. pyloribacteria. Gastroscopy is usually done under light sedation and should not cause more than minor discomfort.

How is H. pylori treated?

A combination of medications is usually used to eradicate H. pylori. The most successful results are achieved with at least 3 different medications used at once. Treatment usually consists of a medication known as a proton-pump inhibitor (a potent stomach acid-lowering drug) in combination with 2 antibiotics or, less commonly, a bismuth drug combined with 2 antibiotics. Your doctor can prescribe combination packs, which contain all the medications you need for a course of treatment.
After you have been treated, you may be tested again by a breath test or gastroscopy, to check that the bacteria have been eradicated. Once the bugs have been eradicated, the risk of re-infection is low in Australia.

 

Bacterial culture media

Introduction

There are various reasons why bacteria have to be grown (cultured) in the laboratory on artificial culture media. One of the most important reasons being its utility in diagnosing infectious diseases. Isolating a bacterium from sites in body normally known to be sterile is an indication of its role in the disease process. Indeed, isolating an organism from the clinical specimen is the first step in proving its role as an etiologic agent. Culturing bacteria is also the initial step in studying its morphology and its identification. Bacteria have to be cultured in order to obtain antigens from developing serological assays or vaccines. Certain genetic studies and manipulations of the cells also need that bacteria be cultured in vitro. Culturing bacteria also provide a reliable way estimating their numbers (viable count). Culturing on solid media is another convenient way of separating bacteria in mixtures.

Bacteria infecting humans (commensals or pathogens) are chemoorganoheterotrophs. When culturing bacteria, it is very important to provide similar environmental and nutritional conditions that exist in its natural habitat. Hence, an artificial culture medium must provide all the nutritional components that a bacterium gets in its natural habitat. Most often, a culture medium contains water, a source of carbon & energy, source of nitrogen, trace elements and some growth factors. Besides these, optimum pH, oxygen tension and osmolarity too have to be taken into consideration.

Ingredients
Some of the ingredients of culture media include water, agar, peptone, casein hydrolysate, meat extract, yeast extract and malt extract. While tap water is suitable for culture media, it must not be used if it contains high amount of minerals. In such situations, distilled or demineralised water should be used. Peptone is a byproduct of protein (plant or animal) digestion. Proteins are often obtained from heart muscle, casein, fibrin or soya flour and is digested using proteolytic enzymes such as pepsin, trypsin or papain. The final product contains peptones, proteoses and amino acids besides a variety of inorganic salts including phosphates, potassium and magnesium. Casein hydrolysate is obtained from hydrolysis of milk protein casein using HCl or trypsin. Meat extract is obtained by hot water extraction of lean beef and then concentrated by evaporation. Meat extract contains gelatin, albumoses, peptrones, proteoses, amino acids, creatinine, purines, and accessory growth factors. Yeast extract is prepared from washed cells of bakers’ yeast and contains wide range of amino acids, growth factors and inorganic salts. Malt extract is prepared by extracting soluble materials from sprouted barley in water at 55oC and concentrated by evaporation. It contains maltose, starch, dextrin, glucose and small amounts of protein and protein breakdown products and growth factors.

Brief history
Initially, culture media were very simple; Louis Pasteur used simple broths made up of urine or meat extracts. Robert Koch realized the importance of solid media and used potato pieces to grow bacteria. It was on the suggestion of Fannie Eilshemius, wife of Walther Hesse (who was an assistant to Robert Koch) that agar was used to solidify culture media. Before the use of agar, attempts were made to use gelatin as solidifying agent. Gelatin had some inherent problems; it existed as liquid at normal incubating temperatures (35-37oC) and was digested by certain bacteria.

Classification
Bacterial culture media can be classified in at least three ways; Based on consistency, based on nutritional component and based on its functional use.
Classification based on consistency:
Culture media are liquid, semi-solid or solid. Liquid media are sometimes referred as “broths” (e.g nutrient broth).
Liquid media are available for use in test-tubes, bottles or flasks. In liquid medium, bacteria grow uniformly producing general turbidity. Certain aerobic bacteria and those containing fimbriae (Vibrio & Bacillus) are known to grow as a thin film called ‘surface pellicle’ on the surface of undisturbed broth. Bacillus anthracis is known to produce stalactite growth on ghee containing broth. Sometimes the initial turbidity may be followed by clearing due to autolysis, which is seen in penumococci. Long chains of Streptococci when grown in liquid media tend to entangle and settle to the bottom forming granular deposits but with a clear medium. Culturing bacteria in liquid media has some drawbacks. Properties of bacteria are not visible in liquid media and presence of more than one type of bacteria can not be detected. Liquid media tend to be used when a large number of bacteria have to be grown. Culture media are suitable to grow bacteria when the numbers in the inoculum is suspected to be low. Inoculating in the liquid medium also helps to dilute any inhibitors of bacterial growth. This is the practical approach in blood cultures. Culturing in liquid medium can be used to obtain viable count (dilution methods).

Solid media:
Any liquid medium can be rendered by the addition of certain solidifying agents. Agar agar (simply called agar) is the most commonly used solidifying agent. The word "agar" comes from the Malay word agar agar (meaning jelly). It is also known as kanten, China grass, or Japanese isinglass. Agar is chiefly used as an ingredient in desserts throughout Japan. It is an unbranched polysaccharide obtained from the cell membranes of some species of red algae such as the genera Gelidium and Gracilaria, or seaweed (Sphaerococcus euchema). Commercially it is derived primarily from Gelidium amansii. Agar is composed of two long-chain polysaccharides (70% agarose and 30% agarapectin). It melts at 95oC (sol) and solidifies at 42oC (gel), doesn’t contribute any nutritive property, it is not hydrolysed by most bacteria and is usually free from growth promoting or growth retarding substances. However, it may be a source of calcium & organic ions. Most commonly, it is used at concentration of 1-3% to make a solid agar medium. New Zealand agar has more gelling capacity than the Japanese agar. Agar is available as fibres (shreds) or as powders.

For preparing agar in Petri plates, 3% agar (by weight) is added to the broth and autoclaved, when the medium is at ~50oC, it is poured on to sterile Petri plates and allowed to set. For preparing agar containing media in test-tubes, the culture medium is mixed with 3% agar and heated with stirring to melt. This ensures that all the tubes get equal amounts of agar. These tubes can then be sterilized by autoclaving.

Semi-solid media
Reducing the amount of agar to 0.2-0.5% renders a medium semi-solid. Such media are fairly soft and are useful in demonstrating bacterial motility and separating motile from non-motile strains (U-tube and Cragie’s tube). Certain transport media such as Stuart’s and Amies media are semi-solid in consistency. Hugh & Leifson’s oxidation fermentation test medium as well as mannitol motility medium are also semi-solid.

Biphasic media
Sometimes, a culture system comprises of both liquid and solid medium in the same bottle. This is known as biphasic medium (Castaneda system for blood culture). The inoculum is added to the liquid medium and when subcultures are to be made, the bottle is simply tilted to allow the liquid to flow over the solid medium. This obviates the need for frequent opening of the culture bottle to subculture.
Biphasic medium

Other solidifying agents
Besides agar, egg yolk and serum too can be used to solidify culture media. While serum and egg yolk are normally liquid, they can be rendered solid by coagulation using heat. Serum containing medium such as Loeffler’s serum slope and egg containing media such as Lowenstein Jensen medium and Dorset egg medium are solidified as well as disinfected by a process of inspissation.

Classification based on nutritional component:
Media can be classified as simple, complex and synthetic (or defined). While most of the nutritional components are constant across various media, some bacteria need extra nutrients. Those bacteria that are able to grow with minimal requirements are said to non-fastidious and those that require extra nutrients are said to be fastidious. Simple media such as peptone water, nutrient agar can support most non-fastidious bacteria. Complex media such as blood agar have ingredients whose exact components are difficult to estimate. Synthetic or defined media such as Davis & Mingioli medium are specially prepared media for research purposes where the composition of every component is well known.

Classification based on functional use or application:
These include basal media, enriched media, selective/enrichment media, indicator/differential media, transport media and holding media.
Basal media are basically simple media that supports most non-fastidious bacteria. Peptone water, nutrient broth and nutrient agar considered basal medium
Addition of extra nutrients in the form of blood, serum, egg yolk etc, to basal medium makes them enriched media. Enriched media are used to grow nutritionally exacting (fastidious) bacteria. Blood agar, chocolate agar, Loeffler’s serum slope etc are few of the enriched media.
Blood agar is preparing by adding 5-10% (by volume) to a basal medium such as nutrient agar or other blood agar bases. Since blood can not be sterilized, it has to be collected aseptically from the animal. Animals have to be bled and the blood is collected in sterile containers with anticoagulant or glass beads. While sheep blood is preferred, blood from rabbit, horse and ox can also be collected. Human blood must be avoided since it may contain inhibitory substances including antibiotics. After the blood agar base is autoclaved, blood is added to the medium at temperature just above the solidifying point of agar. The mixture is then poured on to the plates and allowed to solidify. Blood agar is useful in demonstrating hemolytic properties of certain bacteria. Two major types of hemolysis are often seen on blood agar; beta and alpha hemolysis. Beta hemolysis is the complete lysis of RBC resulting in clearing around the colonies whereas alpha hemolysis is the partial lysis of RBC resulting in greenish discolouration around the colonies. Gamma hemolysis is a misnomer and it indicates non-hemolytic colonies. Chocolate agar is also known as heated blood agar or lysed blood agar. The procedure is similar to that of blood agar preparation except that the blood is added while the molten blood agar base is still hot. This lyses the blood cells and releases their contents into the medium. This process turns the medium brown, hence the name. This medium is especially useful in growing Hemophilus and Neisseria.
Serum for medium can be obtained from animal blood but must be filtered through membrane or seitz filter before use.

Selective and enrichment media are designed to inhibit unwanted commensal or contaminating bacteria and help to recover pathogen from a mixture of bacteria. While selective media are agar based, enrichment media are liquid in consistency. Both these media serve the same purpose. Any agar media can be made selective by addition of certain inhibitory agents that don’t affect the pathogen. Various approaches to make a medium selective include addition of antibiotics, dyes, chemicals, alteration of pH or a combination of these. Thayer Martin Agar used to recover N.gonorrhoeae contains Vancomycin, Colistin and Nystatin. Mannitol Salt Agar and Salt Milk Agar used to recover S.aureus contain 10% NaCl. Potassium tellurite medium used to recover C.diphtheriae contains 0.04% Potassium tellurite. McConkey’s Agar used for Enterobacteriaceae members contains Bile salt that inhibits most gram positive bacteria. Pseudosel Agar (Cetrimide Agar) used to recover P.aeruginosa contains cetrimide. Crystal Violet Blood Agar used to recover S.pyogenes contains 0.0002% crystal violet. Lowenstein Jensen Medium used to recover M.tuberculosis is made selective by incorporating Malachite green. Wilson & Blair’s Agar for recovering S.typhi is rendered selective by the addition of dye Brilliant green. Selective media such as TCBS Agar and Monsur’s Tellurite Taurocholate Gelatin Agar used for isolating V. cholerae from fecal specimens have elevated pH (8.5-5.6), which inhibits most other bacteria.

Enrichment media are liquid media that also serves to inhibit commensals in the clinical specimen. Selenite F broth, tetrathionate broth and alkaline peptone water are used to recover pathogens from fecal specimens.

Differential/Indicator media:
Certain media are designed in such a way that different bacteria can be recognized on the basis of their colony colour. Various approaches include incorporation of dyes, metabolic substrates etc, so that those bacteria that utilize them appear as differently coloured colonies. Such media are called differential media or indicator media. When a particular carbohydrate is incorporated into a medium and a mixture of bacteria inoculated on it, only that bacterium that can ferment it produces acid. This change in pH is detected by using a pH indicator incorporated in the medium and the bacterium that can ferment the sugar appears in a different colour. This approach is used in MacConkey’s agar, CLED agar, TCBS agar, XLD agar etc. MacConkey’s agar is the most commonly used media to culture and identify gram negative bacilli (especially enterobacteriaceae members). It contains bile salts (selective agent), lactose (sugar), peptone and neutral red (pH indicator), agar and water. Those bacteria that can ferment lactose produce pink coloured colonies where non-lactose fermenting colonies produce colourless colonies. Similarly, Vibrio cholerae produces yellow coloured colonies on sucrose containing TCBS medium.
Reduction of potassium tellurite to metallic tellurium by Corynebacterium diphtheriae results in production of black coloured colonies on PT agar. Production of H2S by Salmonella typhi results in production of black coloured colonies on Wilson & Blair’s medium. Enterococcus fecalis produces black coloured colonies on bile esculin agar due to reduction of esculin to esculetin. Detection of hemolysis on blood agar can be considered as an indicator property of Blood agar.

Transport media:
Clinical specimens must be transported to the laboratory immediately after collection to prevent overgrowth of contaminating organisms or commensals. This can be achieved by using transport media. Such media prevent drying (desiccation) of specimen, maintain the pathogen to commensal ratio and inhibit overgrowth of unwanted bacteria. Some of these media (Stuart’s & Amie’s) are semi-solid in consistency. Addition of charcoal serves to neutralize inhibitory factors. Cary Blair medium and Venkatraman Ramakrishnan medium are used to transport feces from suspected cholera patients. Sach’s buffered glycerol saline is used to transport feces from patients suspected to be suffering from bacillary dysentery. Pike’s medium is used to transport streptococci from throat specimens.

Anaerobic media:
Anaerobic bacteria need special media for growth because they need low oxygen content, reduced oxidation –reduction potential and extra nutrients.
Media for anaerobes may have to be supplemented with nutrients like hemin and vitamin K. Such media may also have to be reduced by physical or chemical means. Boiling the medium serves to expel any dissolved oxygen. Addition of 1% glucose, 0.1% thioglycollate, 0.1% ascorbic acid, 0.05% cysteine or red hot iron filings can render a medium reduced. Robertson cooked meat that is commonly used to grow Clostridium spps medium contain a 2.5 cm column of bullock heart meat and 15 ml of nutrient broth. Before use the medium must be boiled in water bath to expel any dissolved oxygen and then sealed with sterile liquid paraffin. Thioglycollate broth contains sodium thioglycollate, glucose, cystine, yeast extract and casein hydrolysate. Methylene blue or resazurin is an oxidation-reduction potential indicator that is incorporated in the medium. Under reduced condition, methylene blue is colourless.

Preparation and storage:
Care must be taken to adjust the pH of the medium before autoclaving. Various pH indicators that are in use include phenol red, neutral red, bromothymol blue, bromocresol purple etc. Dehydrated media are commercially available and must be reconstituted as per manufacturers’ recommendation. Most culture media are sterililized by autoclaving. Certain media that contain heat labile components like glucose, antibiotics, urea, serum, blood are not autoclaved. These components are filtered and may be added separately after the medium is autoclaved. Certain highly selective media such as Wilson and Blair’s medium and TCBS agar need not be sterilized. It is imperative that a representation from each lot be tested for performance and contamination before use. Once prepared, media may be held at 4-5oC in the refrigerator for 1-2 weeks. Certain liquid media in screw capped bottles or tubes or cotton plugged can be held at room temperature for weeks.

Sabtu, 20 Julai 2013

Morfologi P. falciparum, P. vivax, P. malariae, & P. ovale



Plasmodium falciparum
Peringkat
Huraian
Trofozoit awal
clip_image008
ü Bentuk cincin
ü Saiz : 1/5 daripada RBC
ü Bentuk : pelbagai
§ Accole – di atas RBC
§ 2 titik kromatin
§ infeksi berganda (parasetemia)
ü tiada pigmen
ü
Trofozoit matang
clip_image006
ü jarang kelihatan dalam darah periferi
ü saiz kecil
ü eritrosit TIDAK membesar
ü terdapat bintik-bintik ‘MAURERS CLEFT’
ü besar & sedikit (8-10)
ü boleh akibat krenasi dalam RBC (jarang)
Skizon awal
clip_image010
ü jarang terdapat dalam darah periferi
ü saiz hampir memenuhi RBC
ü eritrosit tidak membesar
ü bentuk padat
ü kromatin banyak, pelbagai bentuk
ü pegmen bertaburan (perang)
Skizon matang (penghasilan merozoit)
ü jarang terdapat dalam darah periferi
ü saiz hampir memenuhi RBC
ü bentuk bersegmen
ü merozoit : 8-30 (min 24)
ü berpigmen di tengah-tengah (hitam)
ü merozoit bentuk bujur dan bulat
Peringkat
Huraian
Mikrogametosit
clip_image002
ü masa muncul 7-12 hari
ü saiz lebih besr dari RBC
ü bentuk ginjal / pisang
ü kromatin bertaburan (padat di tengah)
ü pigmen bewarna coklat hitam (bertaburan)
Makrogametosit
clip_image004
ü masa muncul 7-12 hari
ü saiz lebih besar daripada RBC
ü bentuk bulan sabit
ü sitoplasma biru gelap
ü kromatin padat di tengah
ü berpigmen

clip_image012
Plasmodium vivax
Peringkat
Huraian
Trofozoit awal
clip_image014
ü bentuk cincin
ü saiz : 1/3 daripada RBC
ü RBC tak membesar
ü Kromatin halus
ü Tiada pigmen
Trofozoit matang
clip_image014
ü Sel darah merah (RBC) membesar
ü Vakuol jelas
ü Saiz besar
ü Sitoplasma bentuk ‘ameboid’
ü Pigmen halus, warna coklat kekuningan terdapat bintik-bintik (byk schuffner’s)
Skizon awal
clip_image020
ü Hampir memenuhi RBC
ü Bentuk ameboid
ü Kromatin – kromatin tak tetap
ü Pigmen bertaburan
ü RBC membesar/membengkak
Skizon matang
clip_image016clip_image022
ü Saiz hampir memenuhi RBC
ü Bentuk bersegmen
ü RBC lebih membesar
ü Ada 14-24 merozoit (min16)
ü Pigmen di tengah-tengah
Mikrogametosit
clip_image018
ü Masa muncul 3-5 hari
ü Memenuhi RBC yang membesar
ü Bentuk : bulat padat
ü Sitoplasma : biru pucat / merah muda
ü Kromatin : bentuk fibril
ü Pigmen : bertaburan, warna coklat
Makrogametosit
clip_image018
ü Muncul 3-5 hari
ü Memenuhi RBC yang membesar
ü Bentuk: bulat padat
ü Sitoplasma: biru gelap
ü Kromatin padat (periferi)

Plasmodium malariae
Peringkat
Huraian
Trofozoit awal
clip_image032
ü Bentuk cincin
ü RBC tidak membesar
ü Saiz 1/3 daripada RBC
ü Kromatin seperti spesies lain
ü Terdapat juga dalam bentuk ‘BIRD EYE’
ü Mungkin ada pigmen
Trofozoit matang
ü RBC tidak membesar
ü Saiz kecil
ü Bentuk padat, berjalur
ü Pigmen kasar, coklat tua, bertabur dalam bentuk rod/gumpalan
ü Kromatin : berbintik / berfibril
Skizon awal
ü RBC tidak membesar
ü Saiz : hampir memenuhi RBC
ü Bentuk padat
ü Pigmen bertaburan
ü Kromatin: bentuk tak tetap
Skizon matang
clip_image030
ü RBC tidak membesar
ü Saiz hampir memenuhi RBC
ü Bentuk bersegmen (daisy head)
ü Merozoit (6-12) min 8
ü Pigmen bertaburan di tengah-tengah (warna coklat) / perang
Mikrogametosit
ü RBC tidak membesar
ü Muncul 7-14 hari
ü Saiz: lebih kecil dari RBC
ü Bentuk bulat dan padat
ü Sitoplasma: biru pucat
ü Kromatin berfibril
ü Pigmen bertaburan
Peringkat
Huraian
Makrogametosit
clip_image028
ü RBC tidak membesar
ü Bentuk bulat dan padat
ü Saiz lebih kecil dari RBC
ü Sitoplasma:biru tua
ü Kromatin padat (periferi)
ü Pigmen kecil

Plasmodium ovale
Peringkat
Huraian
Trofozoit awal
clip_image036
ü Bentuk cincin padat
ü Saiz 1/3 daripada RBC
ü Tiada pigmen
Trofozoit matang
ü Saiz kecil
ü Bentuk padat
ü Kromatin besar, bentuk tak tetap
ü Pigmen kuning kecoklatan, bertabur
ü Tersebar
Skizon awal
clip_image034
ü Saiz: hampir memenuhi RBC
ü Bentuk padat
ü Kromatin: bentuk tak tetap
ü Pigmen bersepah
Skizon matang
ü Saiz: memenuhi ¾ sel darah merah
ü Bersegmen
ü Merozoit 6-12 (min 8)
ü Saiz merozoit besar
ü Pigmen kuning berkumpul di tengah
Mikrogametosit
clip_image038
ü Saiz: sel RBC, padat, bulat
ü Sitoplasma biru
ü Pigmen sama dengan P. malariae
Makrogametosit
ü Saiz RBC : padat, bulat
ü Sitoplasma biru
ü Pigmen dan kromatin sama dengan P. malariae

Darah Bombay

Pengenalan
Hh adalah kumpulan darah jarang berlaku juga dipanggil Bombay Kumpulan darah. Fenotip darah ini telah pertama kali ditemui di Bombay, kini dikenali sebagai Mumbai, di India, oleh Dr. YM Bhende pada tahun 1952.
Masalah dengan pemindahan darah
Orang pertama yang ditemui mempunyai fenotip Bombay seolah-olah mempunyai jenis darah yang menarik yang bertindak balas kepada jenis darah yang lain dengan cara yang tidak pernah dilihat sebelum ini. Serum yang terkandung antibodi yang bertindak balas dengan semua fenotip biasa RBCs ABO. RBCs muncul kekurangan semua ABO antigen kumpulan darah campur antigen tambahan yang sebelum ini tidak diketahui.
Individu yang mempunyai fenotip Bombay jarang berlaku (hh) tidak menyatakan antigen H (juga dikenali sebagai bahan H), antigen yang hadir dalam kumpulan darah O. Akibatnya, mereka tidak boleh membuat antigen A (juga dipanggil Suatu bahan) atau antigen B ( bahan B) pada sel darah merah mereka, apa sahaja alel mereka mungkin mempunyai A dan B gen kumpulan darah, kerana antigen antigen A dan B dibuat daripada antigen H; Atas sebab ini orang-orang yang mempunyai fenotip Bombay boleh menderma kepada mana-mana anggota sistem kumpulan darah ABO (kecuali beberapa faktor darah lain gen, itu sebagai Rhesus, adalah tidak serasi), tetapi mereka tidak boleh menerima mana-mana ahli darah yang kumpulan darah sistem ABO, (yang sentiasa mengandungi 1 atau lebih A dan B dan H antigen), tetapi hanya daripada orang lain yang mempunyai fenotip Bombay.
Menerima darah yang mengandungi antigen yang tidak pernah berada di dalam darah pesakit sendiri menyebabkan tindak balas imun yang disebabkan oleh sistem imun penerima andai-andai menghasilkan imunoglobulin bukan sahaja melawan antigen A dan B, tetapi juga melawan antigen H. Imunoglobulin yang paling biasa disintesis IgM dan IgG (dan ini seolah-olah mempunyai peranan yang amat penting mengenai penyakit rendah yang hemolitik daripada bayi yang baru lahir).
Ia amat penting untuk mengelakkan sebarang kesulitan semasa pemindahan darah untuk mengesan pembawa fenotip Bombay kerana ujian biasa untuk sistem kumpulan darah ABO akan menunjukkan mereka sebagai kumpulan O. Sejak imunoglobulin Anti-H boleh mengaktifkan lata pelengkap yang RBCs lysis manakala mereka masih dalam edaran memprovokasi reaksi pemindahan hemolitik akut. Ini sudah tentu tidak dapat dicegah melainkan juruteknologi makmal yang terlibat mempunyai cara-cara dan pemikiran untuk menguji Bombay kumpulan.
Kejadian
Ini fenotip yang sangat jarang hadir dalam kira-kira 0,0004% (kira-kira 4 satu juta) penduduk manusia, walaupun di beberapa tempat seperti Mumbai (dahulu Bombay), penduduk tempatan boleh mempunyai kejadian dalam sebanyak 0.01% (1 dalam 10,000) penduduk dan 1 dalam 1 juta orang di Eropah. Memandangkan bahawa keadaan ini amat jarang berlaku, mana-mana orang dengan kumpulan darah ini yang memerlukan pemindahan darah segera mungkin akan tidak dapat untuk mendapatkan, kerana tidak ada bank darah akan mempunyai apa-apa dalam stok. Mereka yang menjangkakan keperluan untuk pemindahan darah boleh bank darah untuk kegunaan mereka sendiri, tetapi sudah tentu pilihan ini tidak terdapat dalam kes-kes kecederaan akibat kemalangan sejak pemeliharaan darah tidak lebih daripada 40 hari.
Biokimia
Biosintesis antigen H dan antigen A dan B melibatkan satu siri enzim (transferases glycosil) bahawa monosaccharides pemindahan. Antigen mengakibatkan rantaian oligosakarida, yang dilampirkan kepada lipid dan protein yang berlabuh di membran RBC. Fungsi antigen H, selain daripada substrat perantaraan dalam sintesis antigen kumpulan darah ABO, tidak dikenali walaupun ia boleh terlibat dalam lekatan sel. Mujurlah orang yang tidak mempunyai antigen H tidak mengalami apa-apa kesan yang merosakkan, dan H-kekurangan hanya satu isu jika mereka memerlukan pemindahan darah kerana mereka memerlukan H-kekurangan darah.
Spesifisiti antigen H ditentukan oleh urutan oligosakarida. Lebih khusus, keperluan minimum bagi H antigenicity adalah yang disaccharide terminal Fucose-galaktosa, di mana fucose mempunyai kaitan 1 alfa (1-2). Antigen ini dihasilkan oleh transferase khusus fucosyl yang menjadi pemang langkah terakhir dalam sintesis molekul. Bergantung kepada jenis darah ABO seseorang, antigen H ditukar kepada sama ada antigen A, antigen B, atau kedua-duanya. Jika seseorang mempunyai kumpulan darah O, antigen H masih tidak diubahsuai. Oleh itu, antigen H hadir dalam darah jenis O dan kurang dalam darah jenis AB. Hh sistem antigen - gambarajah yang menunjukkan struktur molekul sistem antigen ABO (H)
Dua kawasan genom mengekod dua enzim dengan spesifikasi substrat yang amat serupa: locus H (FUT1) yang mengekod transferase Fucosyl dan lokus Se (FUT2) yang sebaliknya tidak langsung mengekod satu bentuk larut antigen H, yang ditemui dalam rembesan badan . Kedua-dua gen yang terletak pada 19 kromosom pada q.13.3. - FUT1 dan FUT2 rapat dikaitkan, iaitu hanya 35 kb selain. Kerana mereka adalah sangat homolog, mereka mungkin hasil duplikasi gen moyang gen bersama. Lokus H mengandungi empat exones yang meliputi lebih daripada 8 kb DNA genom. Kedua-dua Bombay dan fenotip para-Bombay hasil mutasi mata dalam gen FUT1. Sekurang-kurangnya satu salinan fungsi FUT1 keperluan untuk hadir (H / H atau H / h) untuk antigen H dikemukakan pada RBCs. Jika kedua-dua salinan FUT1 tidak aktif (h / h), keputusan fenotip Bombay. Fenotip Bombay klasik disebabkan oleh mutasi Tyr316Ter di rantau ini pengekodan FUT1. Mutasi memperkenalkan codon henti, membawa kepada enzim dipenggal yang kurang 50 aminoacids pada akhir C-terminal, menyebabkan enzim tidak aktif. Dalam Kaukasia, fenotip Bombay mungkin disebabkan oleh beberapa mutasi. Begitu juga, bilangan mutasi telah dilaporkan kepada asas fenotip para Bombay. Lokus Se mengandungi gen FUT2 yang, yang dinyatakan dalam kelenjar yg mengeluarkan. Individu yang "secretors" (Se / Se atau Se / se) mengandungi sekurang-kurangnya satu salinan enzim yang berfungsi. Mereka menghasilkan satu bentuk larut antigen H yang terdapat dalam air liur dan cecair badan yang lain. "Bukan secretors" (se / se) tidak menghasilkan antigen H larut. Enzim yang dikodkan oleh FUT2 adalah juga terlibat dalam sintesis antigen kumpulan darah Lewis.
Genetik
Pesakit yang ujian sebagai jenis O boleh mempunyai fenotip Bombay jika mereka telah mewarisi dua alel resesif gen H, (kumpulan darah mereka Oh dan genotip mereka adalah hh), dan supaya mereka tidak menghasilkan karbohidrat H yang merupakan pendahulu kepada antigen A dan B. Ia kemudiannya tidak lagi perkara sama ada enzim A atau B hadir atau tidak, sebagai bukan A mahupun B antigen boleh dihasilkan sejak H prekursor antigen tidak hadir. Walaupun O jawatan, negatif Oh tidak adalah kumpulan sub-mana-mana kumpulan lain. Kerana kedua-dua ibu bapa mesti membawa alel resesif untuk menghantar jenis darah ini kepada anak-anak mereka, keadaan terutamanya berlaku dalam masyarakat kecil yang tertutup di mana terdapat peluang yang baik untuk kedua-dua ibu bapa kanak-kanak sama ada jenis Bombay, atau heterozigot untuk h alel gen dan sebagainya membawa ciri-ciri Bombay sebagai resesif. Contoh lain mungkin termasuk keluarga-keluarga mulia, yang inbred disebabkan custom 'lebih baik daripada pelbagai genetik tempatan. [Sunting] penyakit hemolitik bayi yang baru lahir
Dalam teori, pengeluaran ibu anti-H semasa hamil mungkin menyebabkan penyakit hemolitik pada janin yang tidak mewarisi fenotip Bombay ibu. Dalam amalan, kes HDN yang disebabkan dengan cara ini belum diterangkan. Ini mungkin boleh dibuat kerana kelangkaan fenotip Bombay tetapi juga kerana IgM yang dihasilkan oleh sistem imuniti ibu. Sejak IgMs terlalu berat untuk menyeberangi halangan ematoplacentar (seperti sesungguhnya yang IgG), mereka tidak boleh mencapai aliran darah janin memprovokasi reaksi hemolitik akut.
Budaya Popular
Dalam manga seram Zombie Kedai Reiko, watak Midori Yurikawa, seorang gadis yang mesra, tetapi berubah-ubah sikapnya muda yang menjadi pembunuhan kejam apabila diserang dan lebih berniat jahat lebih tua kakak, Saki Yurikawa (yang meninggal dunia dalam satu jilid dan datang kembali sebagai zombi) diturunkan kepada menjadi pembawa jenis darah Bombay dan dicari oleh Reiko selepas Dr. Akiyama (doktor yang menyaksikan lebih Midori) membunuh diri oleh slit pergelangan tangan beliau.
Dalam anime Yakitate memasak! Jepun, Pierrot telah diturunkan kepada mempunyai darah Bombay, dan sebagainya adalah Raja Monaco, yang berkaitan dengan beliau.
Dalam anime detektif Dapatkan penyokong, Ban protagonis dan Ginji dihantar dalam misi untuk mendapatkan darah Bombay untuk seorang gadis tenat dinamakan Yumiko. Ia kemudian mendedahkan bahawa salah satu yang menentang memiliki beg itu dengan jenis darah tersebut dan mereka dipaksa untuk melawan mereka untuk memperoleh darah.
Pada yang sabun waktu siang opera Ketua Hospital, dipercayai bahawa Alan Monica, suami tidak boleh telah menjadi bapa anaknya, sebagai darah Alan adalah AB, itu Monica adalah A, dan kanak-kanak itu telah berfikir untuk menjadi O. Walau bagaimanapun, ia telah akhirnya diturunkan bahawa Alan sememangnya bapa; dia dan Monica kedua-duanya adalah pembawa yang resesif gen h dan bayi mempunyai fenotip Bombay [1].
Pada 2007 Telugu filem Okkadunnadu, kedua-dua protagonis Kiran (Gopichand), dan antagonis mafia don Sonu Bhai (Mahesh Manjrekar) adalah hanya dua pembawa jenis darah Bombay. Jantung Kiran dicari oleh pengikutnya yang Sonu Bhai untuk pemindahan jantung segera yang diperlukan oleh Sonu Bhai.
Pada 2012 Hindi tergantung thriller Kahaani, kumpulan darah Bombay adalah salah satu petunjuk utama yang membantu membongkar tergantung.

Rujukan
http://www.ncbi.nlm.nih.gov/books/NBK2268/. Diambil 2012/02/08.

Khamis, 4 Julai 2013

hemolytic disease of newborn


kes HDN (hemolytic disease of newborn)



Kes HDN (Hemolitik Disease Of Newborn).
Punca:
Keadaan kes ini berlaku disebabkan penyakit hemolitik bayi baru lahir (HDN) atau juga dikenali sebagai erythroblastosis fetalis. HDN adalah pemusnahan SDM fetus dan neonat disebabkan oleh tindakan antibody yang dihasilkan oleh ibu. HDN berlaku apabila jenis darah ibu dan bayi adalah tidak serasi.
Dalam kumpulan darah A,B,AB, dan O terdapat kehadiran antigen pada permukaan SDM (sel darah merah). Keadaan ini jarang berlaku. Tetapi apabila masalah ketidakserasian kumpulan darah (A, B, AB, O) antara ibu dan bayi yang dikandung maka, akan muncul perkara-perkara seperti berikut:
Kumpulan darah ibu
O
A
B
Kumpulan darah bayi.
A atau B
B
A
Factor Rhesus juga adalah sangat penting kerana apabila berlaku perbezaan Rhesus antara ibu dan anak akan menyababkan bayi menghadapi risiko HDN. Hal ini berpunca daripada kumpulan darah ibu yang mempunyai Rhesus negative manakala kumpulan darah bayi mempunyai Rhesus positif.
HDN merupakan keadaan di mana jangka hayat SDM fetus menjadi singkat disebabkan oleh tindakan allo-antibodi maternal terhadap antigen yang diperolehi daripada bapa. Allo-antibodi maternal bermaksud pembentukan antibody D. Jenis antibody yang bertindak balas adalah seperti antibody lgM, lgG, lgA, lgD, dan lgE.
Antibody Rhesus boleh hadir secara semulajadi dan juga perolehan. Antibody Rhesus yang hadir secara semulajadi adalah seperti anti-D,dan anti-C. Tetapi antibody Rhesus yang hadir secara perolehan adalah terdiri daripada:
-       Anti-D adalah yang paling imunogenik.
-       Antibodi yang lain seperti anti-c, E,e,C.
-       Yang paling biasa adalah anti-E.
-       Kebiasaannya, anti-c adalah yang biasa menyebabkan HDN selepas anti-D.




Penjelasan bagaimana keadaan ini boleh berlaku:
Keadaan ini berlaku apabila terdapatnya antibody lgG  yang dihasilkan oleh antibody ibu. Antibody lgG mempunyai keupayaan untuk menembusi plasenta dan memusnahkan SDM fetus. Pwngurusan awal Rh-HDN dapat menyelamatkan nyawa bayi serta kehamilan yang seterusnya. HDN yang disebabkan ABO kebiasaanya tidak seteruk HDN akibat ketidakserasian Rh. Kumpulan darah yang lain juga boleh menyebabkan HDN tetapi keadaan ini jarang berlaku.
1. hemoraj fetomental
2.antibodi maternal terhadap antigen paternal terbentuk.
3.semasa kehamilan yang seterusnya, antibodi lgG maternal melintasi plasenta.
4.antibodi maternal menambat pada SDM fetus.
5.hemolisis SDM fetus.
Langkah-langkah untuk bantu selamatkan nyawa bayi:
  1. 1.    Mengguji darah ibu terlebih dahulu.
  • Untuk melihat samaada darah ibu memiliki antibody Rhesus atau tidak.
  • Jika ibu negative dan bayi adalah Rhesus positif, maka suntikan Rho Gm (Rh lg) akan diberikan kepada ibu.
  1. ultrasound:
  • Digunakan untuk mengesan sebarang pembesaran pada organ atau pembentukan cecair dalam fetus.
  • Merupakan teknik pengimejan diagnostic yang menggunakan gelombang bunyi berfrekuensi tinggi.
  • Merupakan computer yang dapat member imej sel darah merah, tisu dan organ.
  • Ultrasound digunakan untuk memerhati atau memeriksa internal organ samaada berfungsi dengan baik atau tidak ke atas sebarang keabnormalan dan memerhatikan pengaliran darah.
 Image
  1. 3.    Amniocentesis:
  • Digunakan untuk mengukur jumlah bilirubin dalam cecair amnion.
  • Merupakan ujian untuk mengesan jika berlaku sebarang kecacatan atau keabnormalan kromosom dan genetic.
  • Ujian ini dilakukan dengan menusukkan jarum menembusi abdomen dan dinding uterus dan menembusi kantung untuk mendapatkan sampel cecair amnion.
Image 
  1. 4.    Persampelan darah tali pusat bayi:
  • Sampel diambil semasa kehamilan.
  • Pemeriksaan dijalankan pada antibody, bilirubin dan anemia pada bayi.
  1. 5.    Neonatal studies:
  • Darah tali pusat disimpan sekurang-kurangnya 7 hari jika HDN disyaki berlaku.
Darah ibu
Darah tali pusat

  1. ABO grouping
  2. Rhesus (termasuk ujian Du).
  3. Indirect antiglobulin test (IAT).

  1. ABO (forward).
  2. Rh (termasuk ujian Du).
  3. DAT.
  4. Identifikasi antibodi.


Rawatan yang dicadangkan sekiranya nilai TBS terus meningkat secara mendadak:
  1. 1.    Fototerapi:
  • Dilakukan apabila jaundis berlaku dalam masa 24jam selepas kelahiran ataupun apabila paras serum bilirubin melebihi 200umol/L.
  • Fototerapi akan mengakibatkan bilirubin indirect tak terkonjugat berubah struktur dari yang tidak larut kepada yang larut dan diekskresi di dalam urin dan hempedu.
Image 
  • Cara pelaksanaan:
-        Mata bayi ditutup terlebih dahulu untuk mencegah kerosakn pada retina.
-        Pakaian bayi ditanggalkan terlebih dahulu (lampin digunakan disetengah-setengah unit).
-        Suhu bayi di moniter diperhatikan dengan teliti.
-        Pengambilan susu pada bayi perlu ditambah. Bayi-bayi yang menyusu badan digalakkan menyusu lebih.
-        SB (serum bilirubin) diperiksa setiap 12 hingga 24jam.
-        Lampu fototerapi di padamkan apabila darah untuk serum bilirubin di ambil. Pengambilan darah adalah kerap dalam keadaan Rhesus isoimunisasi.
-        Jarak gelombang cahaya yang efektif untuk fototerapi adalah dalam jarak 424 hingga 475nm (spectrum cahaya biru) dan irradiasi pada lingkungan 4 hingga 12 ug/nm/cm2. Irradiasi lampu-lampu fototerapi mestilah diperiksa dengan fotometer selepas 100-200jam selepas di pakai.
-        Komplikasi yang boleh berlaku akibat fototerapi adalah:
  • Kulit menjadi gelap.
  • ‘bronze baby syndrom’
  • Cirit-birit.
  • Dehidrasi.
  • Ruam-ruam pada kulit bayi.

  1. 2.    Penukaran darah (exchange transfusion).
  • ET dilakukan dengan memasukkan dan mengeluarkan sejumlah darah (kuantiti yang sedikit) melalui vena atau arteri.
  • Dilakukan apabila paras SB mencecah 340umol/L atau lebih.
  • Boleh dilakukan pada paras SB yang lebih rendah jika terdapat risiko yang tinggi.
  • Penukaran darah tidak dilakukan walaupun mempunyai nilai SB mencapai 400-500 umol/L pada bayi yang cukup bulan yang sihat. Keputusan dilakukan oleh pakar pediatric yang menjaga pesakit tersebut.
 Image
  • Objektif ET:
-        Menurunkan paras bilirubin untuk mengelakkan kernikterus.
-        Mengeluarkan SDM bayi yang telah tersensitisasi.
-        Menyediakan darah yang sesuai atau serasi dan cukup untuk pengangkutan oksigen.
-        Mengurangkan paras antigen yang boleh bergabung dengan antibody dalam bayi.

  • Pelaksanaan:
-        Jumlah isipadu darah yang diperlukan untuk menukar 90%-95% darah bayi adalah dianggarkan lebih kurang 2 kali isipadu darah dalam bayi.
-        Darah yang digunakan mestilah darah yang baru. Darah cpf dari tabung yang berumur kurang dari 4 hari juga boleh digunakan.
-        Pada bayi yang tidak sihat atau mempunyai berat lahir yang rendah, darah yang digunakan mestilah berumur kurang daripada 48jam jika darah yang baru tidak diperolehi. Salah satu daripada 2 cara digunakan di dalam penukaran darah:


  • Kaedah 1: Pengambilan darah injeksi semula alikuot darah secara bergilir-gilir melalui vena umbilicus.
    • Setiap giliran (cycle) (pengeluaran 5, 10, atau 20 ml dan injeksi semula 5, 10, dan 20ml) mengambil 4-5 minit dan mengambil masa 2-3 minit untuk infusi semula.
    • Kaedah 2: Pengeluaran yang berterusan darah bayi dari arteri umbilicus dan diseimbangkan dengan infuse darah baru yang berterusan melalui vena.

-        Isipadu darah yang lebih rendah digunakan pada bayi-bayi yang kecil atau sakit tenat.
-        Penukaran darah yang sepenuhnya menggunakan mana-mana teknik di atas mengambil masa 1.5 – 2 jam.
-        Setiap bayi di monitor secara berterusan dengan monitor EKG dan mestilah diperiksa dengan teliti. Kadar nadi, warna, dan aktiviti bayi direkodkan pada setiap giliran penukaran darah.

  • Bahaya penukaran darah:
-        Komplikasi vascular:
  • Embolisasi dengan udara atau trombi, thrombosis.
-        Komplikasi hemodinamik:
  • Aritmia.
-        Masalah elektrolit:
  • Hiperkalemia, hipernatremia, hipokalsemia, asidosis
-        Infeksi /jangkitan:
  • Bakteremia, hepatitis.
-        Masalah koagulasi:
  • Kelebihan heperinisasi, trombositopenia.
-        Lain-lain:
  • Kecederaan mekanikal kepada sel-sel darah merah donor, necrotizing enterocolitis, hipotermia, hypoglisemia.